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Abstract

A long, narrow flexible plate subjected to cyclic disturbances at the midsection is regulated by a linear motor at the

boundary. Oscillations at the midsection will be eliminated while the rest of the plate is allowed to swing in a way as to

counteract the external force. The control design is based on a virtual passive approach without referring to the detailed

mathematical model. A vibration absorber integrating the flexible plate with a combination of passive elements attached to

the boundary is first devised. Rather than built with hard physical devices, these passive elements including mechanical

springs, dampers, and masses are emulated by the linear motor with a suitable feedback law. The feedback signal is the

boundary displacement from an LVDT sensor. Numerical simulations illustrate how a node is developed in the middle of

the plate while the rest of the structure tends to a harmonic motion. Experimental results confirm the effectiveness of the

control scheme.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

This paper reports the design and experimental results of a vibration control scheme on a long, narrow
flexible plate subjected to cyclic disturbances. This flexible plate can be modeled as a laterally oscillating beam.
The disturbances are imposed at the midsection of the flexible plate, while the actuator, a moving-magnet
linear motor, is located at the boundary. The objective is to eliminate oscillations at the midsection. The
system is generic to the class of flexible structures in which the source of disturbance is not collocated with the
actuator, and therefore cannot be directly neutralized by the control actions.

The dynamic vibration absorber (DVA), first patented by Frahm in early last century [1] is a classic
technique to neutralize a harmonic disturbance. A DVA is essentially a flexible substructure having a resonant
frequency close to that of the disturbance. The original DVA was lightly damped and the system might be only
marginally stable. As a refinement, a damped vibration absorber was introduced [2]. By adding a damper
between the primary body and the additional structure, transient response was improved at a price: vibrations
of the primary body could no longer be perfectly absorbed. Besides, the passive DVA also suffers a major
drawback: its characteristic frequency is difficult to tune if the disturbance’s frequency drifts over time.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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By contrast, active vibration control has the benefit of easily tunable parameters and can be adapted for a
much wider range of operating frequency. Various kinds of actuators have been employed in active vibration
control, including DC motors [3–5], electromagnetic actuators [6], piezoelectric materials [7], and linear voice-
coil motors [8]. One common feature among these works is that the actuators are mounted directly on the
locations where the vibrations are to be attenuated. In other words, the actuator is capable of directly
counteracting the external disturbance with a proper control algorithm. However, there are situations where it
is undesirable or impractical to mount a cumbersome physical device directly on the hot spot such as, for
example, the end effector of a flexible arm. For such a system the disturbance must be indirectly compensated
by an actuator located at a distance away. Recently in Ref. [9], procedures were developed using a chain of
oscillators to passively impose nodes on a flexible structure. The nodes could be away from the oscillators and
be located at any point of the structure, thereby quenching vibrations at the desired spot. Since no damping
was considered in Ref. [9], the results were valid in the steady state but the transient times might be quite long.

In the control of flexible structures the so-called spillover effect [10] may occur, leading to system instability,
if the sensor and the actuator are not collocated. This problem will be avoided in this research by mounting a
displacement sensor (a linear variable differential transformer, LVDT) directly to the linear motor. That is, the
actuator is collocated with the sensor, which measures the boundary displacements of the flexible plate. This is
related to boundary control of flexible structures [11–13], where the control input is imposed at one end of a
transversely vibrating beam or a stretched string moving axially. The major difference is that the disturbance
concerned here stems from a non-decaying harmonic source that cannot be completely neutralized.
Consequently, one has to settle for a solution that cancels out external forces in certain part of the plant and
allows the rest of the system to oscillate.

In this paper, the controller will be developed from a virtual passive approach without referring to the
detailed, sophisticated dynamic equations. We conceptually design a mechanical structure that makes physical
sense by attaching a combination of passive elements at the boundary of the flexible plate, including
mechanical springs, dampers, and masses. These elements integrate with the flexible plate to form a perfect
dynamic vibration absorber with respect to the midsection. The conceptual device modifies the structure to
have a node at the midsection and at the same time provides necessary damping to the structure. Such a
conceptual device may be difficult to construct or install physically, but can be readily realized or emulated by
the linear motor. In other words, the controller is primarily devised via physical reasoning; mathematical
analysis is conducted at a later stage to verify performance. This is in contrast to the conventional approach, in
which mathematical modeling is usually required for the development of the control algorithm, while physical
interpretation, if any, is given later.

The notion of virtual vibration absorbers related to this research was first presented in Ref. [14], and was
applied to a flexible beam in longitudinal motion in Ref. [15]. This paper tackles lateral vibrations of flexible
plates and provides real-time testing results on an experimental prototype. Numerical simulations based on a
finite number of flexible modes are conducted to examine the behavior of the flexible structure under the
virtual passive controller. The key control parameter for a wide range of disturbance frequencies is also
determined via numerical analysis.

The rest of paper is arranged as follows. Section 2 reviews the design of a novel vibration absorber for a
simple mass–spring structure. This mechanism not only neutralizes a harmonic disturbance but also provides
damping to the system. In Section 3 a vibration absorber integrating the flexible plate and a combination of
passive elements at the boundary is developed in analogy to the method of Section 2. In this section the
motions of the flexible plate are illustrated by numerical simulations. Parameters of the key passive elements
are also determined. Section 4 shows how to emulate the passive elements by a linear actuator with a feedback
law. Stability of the closed-loop system is then analyzed mathematically. Section 5 presents the experimental
results on a testing apparatus, followed by concluding remarks in Section 6.

2. System description and review of vibration absorbers with inherent damping

The system under investigation is sketched in Fig. 1, where a strip of flexible plate is subjected to a cyclic
disturbance at the middle. A linear actuator is mounted at the boundary. The plate is narrow in width so that
it can be viewed as a flexible beam undergoing lateral oscillations. Equipped with a linear variable differential
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Fig. 1. A flexible plate subject to cyclic disturbances, and the simplified free-body diagram.
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transformer, the actuator is capable of imposing a calculated force on the end of the plate according to the
displacement of the boundary. The disturbances are generated by a rotary motor driving a block that moves
along a linear guideway.

The dynamic equation of the system can be described by
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The boundary condition on the left is
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where

d ¼ a sinðo0 tþ cÞ. (4)

And the boundary condition on the right is
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In the above equations, u is the control input and d is the harmonic disturbance of radian frequency o0. The
length of the plate is ‘ and the disturbing force is imposed at x ¼ ‘=2. The parameter EI denotes the bending
stiffness and rA is the mass per unit length. Note that while o0 is given, the amplitude a and phase c of the
disturbance are uncertain constants. As mentioned in the introduction, initial controller design does not need
the system equations. However, they are useful later in constructing a simulation model and verifying system
stability and performance. Without loss of generality the inertia of the lumped mass at the midsection is
neglected.

The objective of the research is to design a control algorithm with which oscillations at the midsection tend
to zero while the rest of the structure swings in such a way as to cancel out the harmonic disturbance. Before
exploring this distributed-parameter system, the development of vibration absorbers for a simple spring–mass
structure is reviewed below. It will serve as an analogy to be followed in the next section.

An undamped vibration absorber: Fig. 2 shows a vibration absorber that completely neutralize the harmonic
disturbance of radian frequency o0. The key is to mount a spring–mass pair on the primary body, and the
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natural frequency of the spring–mass pair should match the frequency of the disturbance. In other words, the
primary-body-fixed structure (or output-fixed system) should contain a characteristic frequency of o0.

A symmetric vibration absorber: If the primary body is lightly damped, the vibration absorber must contain
some damping effect to allow for a decent stability margin. However, adding a damper to the absorber in
parallel to the spring ka in Fig. 2 also makes it impossible to perfectly neutralize the harmonic disturbance.
Fig. 3 shows an alternative scheme in which the damper does not affect the characteristic frequency of the
vibration absorber. The scheme is called a symmetric vibration absorber [14]. Note, however, the two
spring–mass pairs connected by the dashpot need not be identical, as long as each pair has the same natural
frequency of o0. Note also that while the mechanism is difficult to implement mechanically, it can be readily
emulated by a servomotor [4].

3. Design of an integrated vibration absorber

In this section, a vibration absorber for the flexible plate will be devised in two steps following the analogy
of the rigid-body system of Figs. 2 and 3. In contrast to the previous case, where the vibration absorber is
distinct from the primary body, the flexible plate itself will serve as part of the vibration absorber.

Analogous to Fig. 2, the first step is devising a mechanism such that the output-fixed system (i.e., the
midsection-stationary structure) has a natural frequency of o0. The simplest way in this case is attaching a
spring of stiffness ks to the boundary. The stiffness is tuned such that the midsection-hinged structure contains
a natural frequency of o0, as shown in Fig. 4. Since there are infinite numbers of natural modes in the flexible
structure, one may tune ks to have the fundamental frequency match o0. Note that if the disturbance
frequency o0 significantly exceeds the fundamental frequency of the structure, higher-frequency mode can be
tuned to match o0.

The structure shown in Fig. 4 is not properly damped; the system is only marginally stable. The next step
will be adding a damper to the system while preserving the natural frequency of o0. Fig. 5 shows one solution.
Analogous to Fig. 3, an additional damper–mass–spring mechanism, with

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ka=ma

p
¼ o0, provides needed

damping to the system without affecting the fundamental natural frequency, since the flexible plate will
oscillate synchronously with the mass ma at the frequency o0 in the steady phase.
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Fig. 3. A vibration absorber with inherent damping. With the damper, the absorber still has a resonant frequency at o0 if
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In steady state the two masses swing synchronously in the same direction (no relative motions between z and z0 ). The damper is crucial in

the transient phase so that the system is stabilized.
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The resulted system is shown in Fig. 6. Similar to the block in the system of Fig. 3, the midsection of the
flexible plate tends to a standstill while the rest of the structure swings in a harmonic way at the frequency of
o0. In other words, integrated with the passive elements, the flexible plate functions as a vibration absorber for
the block at the midsection.

Illustrations: Numerical simulations are conducted to illustrate the behavior of the system of Fig. 6. The
simulation model is derived using Lagrange equations based on five flexible modes for the flexible plate.
The cyclic disturbance has a frequency of 1.5Hz, and the spring ks at the boundary is adjusted so that the
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fundamental frequency of the midsection-hinged structure is calculated to be 1.5Hz. Fig. 7 shows the motions
of the flexible plate at various moments. It is seen that initially the midsection ðx=‘ ¼ 0:5Þ is vibrating
significantly. The oscillations gradually decay. Eventually the point of concern comes to a standstill while the
flexible plate keeps swinging with a node in the middle.

Note that the flexible modes used in the simulation are determined by first dividing the beam into 400
elements and calculating the mode shapes that are consistent with the boundary conditions. The first five
modes are retained and then further refined by smoothing out the curves near the boundary using a cubic
spline interpolation. Validity of using 5 modes in the simulation can be checked by examining the contribution
of the individual modes in the time response. It turns out that the magnitudes of the last three modes are
significantly lower than the first two modes, and that of the fifth mode is almost negligible. If the disturbance
frequency is higher, however, a larger number of modes may be needed.

Determination of ks: The fundamental natural frequency of the midsection-hinged plate is calculated
against ks. The results are normalized against the bending stiffness, length, and mass per unit length, as
shown in Fig. 8. Using this figure one may determine the suitable ks given the frequency of disturbance
and other plant parameters. However, from this figure it is seen that there are limits to the achievable
frequencies. If the disturbance’s frequency is beyond these limits, a suitable ks cannot be found. For higher
frequencies one may try the second or third natural frequency, but for lower frequencies using a single
spring at the boundary is not enough. The structure has to be ‘‘softened’’ in some way for a lower natural
frequency.

Softening the plate: The fundamental frequency of the midsection-hinged plate can be further reduced by
attaching a spring–mass–spring mechanism instead of a single spring at the boundary, as shown in Fig. 9. In
the fundamental mode the mass moves in the same direction as the boundary. The spring k1 in the figure
behaves like a negative spring with respect to the flexible plate: when the boundary is below (above) the
equilibrium position, the spring k1 pulls the plate downward (upward). The flexible plate is effectively softened
by the spring–mass structure. Fig. 10 shows the range of achievable fundamental natural frequency with
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different k1’s, given k2 ¼ k1 and ms ¼ rA‘. It is seen that the frequency can now be reduced all the way down
to zero.
4. Realization by feedback control

The passive mechanisms devised in the previous section are simple to draw but difficult to implement with
hard mechanical elements, especially if the parameters are to be accurately tuned. With the help of a linear
motor, however, the passive elements at the boundary can be emulated by a feedback algorithm and easily
tuned for various characteristic frequencies.

The following control law emulates the dynamics of the passive mechanism shown in Fig. 6:

u ¼ �ksyð‘; tÞ þ bð_z� _yð‘; tÞÞ, ð6Þ

€z ¼ �
ka

ma

z�
b

ma

ð_z� _yð‘; tÞÞ, ð7Þ
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where _yð‘; tÞ � qy=qtð‘; tÞ; ks, ka, ma, and b stand for the stiffness, inertia, and damping coefficient for the
virtual passive elements, as defined before. The variable z represents the displacement of the virtual mass ma.
In implementation yð‘; tÞ is measured and _yð‘; tÞ is calculated by numerically differentiating yð‘; tÞ; the variable
z will be calculated and updated every sampling period in the computer.

Since the interaction between the lumped, passive elements and the flexible plate in Fig. 6 is governed by
Eqs. (6) and (7) (as Fig. 11 illustrates), the closed-loop system of Eqs. (1)–(7) are mathematically equivalent to
the structure of Fig. 6.

Stability of the unforced system: Stability of the closed-loop system, excluding the external disturbance, can
be verified by choosing a Lyapunov function that represents the combined kinetic energy and potential energy
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of the equivalent mechanical structure:
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1
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Using Eqs. (1)–(7) (dropping the disturbance, i.e., d ¼ 0), it can be shown that

_V ¼ �bð_z� _yð‘; tÞÞ2, (9)

which is the power dissipated by the damper. Since V is lower bounded and _V is negative semi-definite, _V must
tend to zero (from the ‘‘Lyapunov-like lemma’’ [16]); therefore _z! _yð‘; tÞ. Hence the interactions between the
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mass ma and the flexible plate vanish so that eventually the two substructures either oscillate synchronously at
their respective natural frequencies, or the amplitudes vanish. However, since o0 (the natural frequency of the
ma–ka pair) is also the fundamental frequency of the midsection-hinged structure, it must be higher than the
fundamental frequency of this midsection-free plate, meaning the two substructures cannot move
synchronously. Therefore the only possible solution is z! 0 and yðx; tÞ ! 0.

Zeros at �io0: In the previous section, the fact that the system output, namely yð‘=2; tÞ tends to zero under
the harmonic disturbance has been explained from the viewpoint of a dynamic vibration absorber. From the
control perspective, it can also be explained by the zero dynamics, which is defined to be the internal dynamics
of the system when the output is rendered identically zero by the input [17]. (Here the disturbance d is regarded
as the input.) In linear systems the eigenvalues of the zero dynamics coincide with the zeros of the transfer
function. Since o0 is a natural frequency of the midsection-hinged structure, it is one of the characteristic
frequencies of the system’s zero dynamics. In other words, if the closed-loop system is discretized with a large
but finite number of modes, �io0 will be a pair of zeros in the transfer function from d to yð‘=2; tÞ. The steady-
state response of the output is therefore zero for a sinusoidal disturbance of frequency o0. Refer to Ref. [15]
for a formal treatment of zero output response on a longitudinally moving beam.

Note that when a virtual mass at the boundary is required to deal with low-frequency disturbance (Fig. 9),
the control law should be modified to be

u ¼ �k1 yð‘; tÞ � z2ð Þ þ bð_z1 � _yð‘; tÞÞ, ð10Þ

ma €z1 ¼ �ka z1 � bð_z1 � _yð‘; tÞÞ, ð11Þ

ms €z2 ¼ �ðk1 þ k2Þz2 þ k1 yð‘; tÞ, ð12Þ

where z1 and z2 represent the displacements of the virtual mass ma and the virtual mass ms, respectively.
5. Experimental results

Fig. 12 shows the picture of the experimental apparatus and its functional sketch. The flexible plate is made
of copper alloy; its dimensions are 800mm long, 100mm wide, and 1.1mm thick. The bending stiffness (EI) is
Accelerometer

Linear servomotor
with LVDT

Hinged

Linear
guideway

Disturbance
motor

Flexible plate

Flexible plate

Fig. 12. Photo of the experimental apparatus and its functional sketch.
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measured to be about 2:83Nm2. The moving-magnet linear motor is made by H2W Technology, Inc.; it has a
maximum stroke of 38.1mm, and a maximum continuous force of 14.11N. The force is linearly proportional
to the applied current so that a driver in current mode is used. A linear variable differential transformer is
mounted at the end of the linear motor to measure the boundary displacements. The displacement signals
are fed back through a 12-bit A/D converter. The control algorithm is implemented using a PC running in
MS-DOS mode. (The algorithm is programmed in C.) The disturbance is generated by a rotary DC
servomotor driven by a microcontroller (PIC16F877). To monitor the response at the point of concern, a 1G
accelerometer is glued to the middle of the flexible plate. However, only the displacement signal from the
LVDT is used in the control loop: the actuator and the sensor are collocated as mentioned earlier. The
accelerations of the midsection are monitored and recorded by a separate PC. Fig. 13 shows the experimental
setup.

In the experiment the frequency of the cyclic disturbance is set at 4 rev/s (4Hz). Following the design
procedure described in Section 3, we first attach a virtual spring to the boundary. This is achieved by using a
simple proportional feedback law for the linear motor, i.e.,

u ¼ �ksyð‘; tÞ. (13)

The stiffness ks is tuned such that the fundamental natural frequency of the midsection-hinged structure is
equal to 4Hz. This is verified by the spectrum of the impact response of the boundary (with the midsection
held still) as shown in Fig. 14, where ks is tuned to be 0.123 (N/m). Note that with the proportional feedback
alone (Eq. (13)), an impact on the boundary leads to sustained oscillations because the system is only
marginally stable.

An additional set of virtual spring, mass, and damper is then added to the control action, as governed by
Eqs. (6) and (7), where ka, ma, b are, respectively, set to be 631.5 (N/m), 1(kg), 0.24 (N s/m). Note thatffiffiffiffiffiffiffiffiffiffiffiffiffi

ka=ma

p
¼ 25:13 rad=s, or 4Hz as required.

The experimental results of the closed-loop system are shown in Fig. 15, where the accelerations of the
midsection before and after the control activation are recorded. It is seen that vibrations at the midsection are
drastically reduced thanks to the control action. In fact, there are no visible oscillations at the midsection
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Accelerometer

Rotary
motor
controller
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RS232

 12-bit A/ D
& D /A card PC_1

(Controller)
PC_2
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Fig. 13. Experimental setup.
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relative to the steel base. Fig. 16 shows the displacements of the boundary measured by the LVDT. As
expected, the boundary tends to a harmonic motion of 4Hz. Note that the spectrum is calculated with a FFT
algorithm using the recorded data over the interval of 10–20 s.

6. Conclusions

The control technique developed from physical reasoning was shown to be capable of transforming a
boundary-controlled flexible structure into a dynamic vibration absorber. Numerical simulations demon-
strated how a node was developed in the point of concern. The experimental results confirmed the effectiveness
of the proposed method. Because the source of disturbance was not directly neutralized by the actuator,
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oscillations could be eliminated only in certain part of the structure. However, it is possible to shift the output
of concern from the middle to other locations by adjusting ks in such a way that a node is developed at the
location of interest. Moreover, since the control design is independent of the detailed mathematical model of
the plant, it could be applied to a flexible structure of different shapes.
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